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The outcomes of some experiments are extremely dependent on 

experimental conditions that may not be thought of as important for, or 

related to, the processes being studied.  In addition, the outcomes of some 

experiments do not always agree with the predicted outcomes.  In order to 

determine whether or not chaotic events could be part of some cellular 

processes, the well-known fractal known as the Mandelbrot set was 

analyzed.  Interested?  Read on… 



Part 1: The Mandelbrot Set  
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The equation for the Mandelbrot set is simply 

 

 

where z0 is equal to zero and m is a constant complex 

number.  A given value of m is part of the Mandelbrot set if 

the value of z does not start increasing towards infinity. 

 

Thus, if m has a value of 0, it is quickly apparent that 0 is 

part of the set.  1, on the other hand, is not part of the set (z0 

= 0, z1 = 1, z2 = 2, z3 = 5, z4 = 26 …). 

 

In order to draw the Mandelbrot set, the real and imaginary 

components of m represent the coordinates of a point on a 

graph.  If the value of z increases above 30, then one can 

conclude that the point is not part of the set.  If, after much 

iteration, it does not, then one can conclude that the point is 

probably part of the set. 

 

If x and y are the real and imaginary numbers of z, and g and 

h are the real and imaginary numbers of m, then the above 

equation can be rewritten as: 

 

 

  

This leads to the following plot where points that are part of 

the set are colored black and points that are not part of the 

set are colored either light or dark gray depending on 

whether an odd or even number of iterations was needed 

before the absolute value of either x or y became greater than 

30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If g and h represent the constant rates of synthesis of two 

proteins, x and y, the Mandelbrot set illustrates the following 

concepts: 

 

1) The complex appearance of this set suggests that for 

some constant rates of synthesis, g and h, it is nearly 

impossible to predict whether they will lead to large 

amounts of x and y. 

 

2) The knowledge of the results of all constant rates of 

synthesis of x and y provides little help in determining 

the underlying set of equations. 

not part of the set 

part of the set 



Part 2: Adding Cell Division 

Some rates of synthesis lead to a surge in concentrations, 

where values of x and y increase towards infinity, while 

others do not. 

 

We now introduce cell division into this model to combat 

the problem of ballooning concentrations by stating that if 

the absolute value of the product of x and y is larger than a 

fixed amount then both x and y are divided by two. 

 
In the following figure, if the absolute value of the product of xn and yn is 

larger than 0.75, then both xn and yn are divided by two.  Points that are part 

of the set and never lead to division are colored black.  Points that are part of 

the set but had their xn and yn values divided by two one or more times are 

colored from black to gray to white, where the intensity reflects the amount 

of times xn and yn were divided by two.  Points that are not part of the set are 

colored so that red levels reflect the amount of times their xn and yn values 

were divided by two, their green levels reflect the current absolute value of y 

and their blue values reflect the amount of iterations that took place before 

either xn+1 or yn+1 became greater than 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The points that are not part of the set can be seen as 

representing rates of synthesis that, in the long run, are not 

compatible with life.  We can now introduce two more 

concepts: 

 

3) The appearance of gray and white patches indicates 

that additional rates of synthesis are compatible with life 

as long as cell division takes place. 

 

4) The difference in green intensities shows both that y 

can have many different values at the time when it is 

determined that a point is not part of the set and that it is 

essentially impossible to infer what this value will be 

when knowing just the constant rate of synthesis. 

 

 

The two equations, while perfectly good for plotting the 

Mandelbrot Set, have a minor problem in that values of x 

and y can end up becoming negative.  This is a problem 

because we are going to assume that x and y represent the 

concentrations of two proteins. 

 

 

If nature abhors a vacuum, then nature surely abhors 

negative proteins… 

 



Part 3: Dealing With Negative Protein 

Concentrations 
By subtracting of one protein concentration from another, 

one can obtain a negative result this is still be perfectly 

compatible with life. 

 

So, we can replace x with the difference in concentrations 

between proteins A and B and y with the difference in 

concentrations between proteins C and D.  This yields the 

following set of equations where [A], [B], [C] and [D] 

represent the concentrations of A, B, C and D, respectively: 
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This can be expanded to: 

 

h[D]2[B][C]2[B][D]2[A][C]2[A][D][C]

g[D][D]2[C][C][B][B]2[A][A][B][A]
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Next, we assign all of the positive terms to A and C and all 

of the negative terms to B and D and split g and h into ga, gb, 

hc and hd where g = ga – gb and h = hc – hd.  This allows us to 

obtain the following four equations that can be used to 

determine the values of [A]n+1, [B]n+1, [C]n+1 and [D]n+1. 
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We now have four separate equations that describe how the 

concentrations of four proteins change that are based on the 

single equation that gives rise to the Mandelbrot Set.  In 

order to obtain the same image as before, we divide all 

concentrations by two if the absolute value of the product of 

[A] minus [B] and [C] minus [D] is larger than 0.75.  In 

addition, we set ga to g/2, gb to –g/2, ha to h/2 and hb to –h/2. 

 
In the following figure, cell division takes place if the product of [A] minus 

[B] and [C] minus [D] is greater than 0.75.  Points that are part of the set but 

had their values divided by two one or more times are colored from black to 

gray to white where the intensity reflects the amount of times x and y were 

divided by two.  Points that are not part of the set are colored so that red 

levels reflect the amount of times their values were divided by 2, green levels 

reflect the current absolute value of [C] minus [D] and blue values reflect the 

amount of iterations that took place before either [A] minus [B] or [C] minus 

[D] became greater than 30. 

 

 

 

 

 

 

 

 

 

 

 



Part 4: The Removal Of Proteins 

In the case of –g/2 and –h/2 we are still subtracting and, in 

fact, values of [A], [B], [C] and [D] may become negative 

because of that.  For this reason, we will now take a look at 

what happens if we do not subtract.  In this case, we set ga to 

g and ha to h and keep gb and hb at zero. 

 
The four-equation Mandelbrot set without subtraction.  Cell division takes 

place if the product of [B] and [D] is greater than 0.1.  Points are considered 

to be part of the set if the absolute values of [A], [B], [C] and [D] never 

become greater than 30. 
 

 

 

 

 

 

 

 

 

 

 

 

 

When ga and ha are greater than zero, which is in the lower 

right quadrant, it appears as if there is a triangular region 

where cells rest that is surrounded by a region where cells 

divide.  If even larger values for the constant rates of 

synthesis are used, then the concentrations of one or more 

species rise to the point that the cells die. 

 

This is not as interesting as before… 

Extending these equations to biologically-relevant processes 

still has the problem that if [A], [B], [C] and [D] represent 

the concentrations of proteins, then it is difficult to imagine 

how their concentrations will change from one iteration to 

the next to values that are partially the products of existing 

concentrations.  Thus, we modify the equations to add to the 

existing concentrations instead of replacing them entirely.  

This leads to: 
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Given that proteins degrade, we can also include the concept 

of a protease that is capable of degrading A, B, C and D.  

The following reaction denotes what happens when a 

protease, P, acts on a substrate, S, and produces a degraded 

product, D. 

 

P + S  P + D 

 

Adding the effects of a protease to this system leads to: 
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Part 5: Life Is Not Exactly Like The Mandelbrot Set 

As we have introduced a parameter for time into the 

equation for degradation, we will also make synthesis time 

dependent.  This leads to: 
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There are still factors of 1 and 2 in front of some of the 

products.  As there is no compelling reason why these 

factors need to be 1 or 2, they are replaced by additional 

factors denoted by f: 
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In order for these equations to lead to the original 

Mandelbrot set, t should be equal to 1 and [A], [B], [C] and 

[D] need to be fully degraded in each of the iterations.  

Thus, the product of each k and [P] needs to be large.  

Importantly, it is still necessary to subtract in order to get a 

result that looks like the original Mandelbrot set and this is 

not compatible with protein concentrations. Thus, the 

Mandelbrot set, while illustrative of the concepts, may 

not be a possible example of a cellular process. 

However, this equation can indeed use plausible positive 

values and generate the following result: 

 
In this figure, the following constants are used: t = 1.0, ha = 0.01, hb = 0.01, 

[P] = 1.0, kA = 0.7, kB = 0.7, kC = 0.7, kD = 0.7, fA[A][A] = 1.5, fA[B][B] = 1.1, 

fA[C][D] = 0.2, fB[C][C] = 4.1, fB[D][D] = 4.0, fB[A][B] = 1.2, fC[A][C] = 2.0, fC[B][D] = 

1.0, fD[A][D] = 1.3 and fD[B][C] = 1.3.  ga and gb are varied along the x and y axes 

for ga values between -5 and 5 and gb values between -3.75 and 3.75.  Up to 

400 iterations are performed as long as [A], [B], [C] and [D] remain below 

300.  Cell division takes place if [D] rises above 0.1.  For points that are not 

part of the set, the final [A] and [B] values (top left panel) and [C] and [D] 

values (top right panel) are depicted in red and green, respectively.  Blue 

values alternate between bright and medium intensities to show the number 

of iterations that were needed before it was determined that the point is not 

part of the set.  Points that are part of the set are left black in the top panels.  

In the bottom panels, points that are part of the set are bright red and the blue 

intensity is indicative of the number of iterations that were performed (400 

being bright blue that coupled with bright red lead to magenta).  The green 

intensity is indicative of the amount of cell divisions that have taken place 

and leads to white when combined with magenta.  The intensities shown in 

the lower left panel show green and blue intensities where 0 iterations or 

divisions result in the darkest color while 400 iterations or divisions result in 

the brightest color.  The green and blue intensities shown in the lower right 

panel have been increased so that even low numbers of iterations or divisions 

are visible. 



Part 6: Minor Changes Lead To Major Differences 

When ga and gb are only positive, a complex pattern emerges 

of when cell division takes place and when it does not.  In 

addition, this pattern becomes susceptible to minor changes 

in the factors used in the equation. 

 
A magnification of the region where ga and gb are positive in the previous 

figure showing what happens if some of the factors in the equations are 

slightly changed.  ga ranges from 0 (left) to 0.6 (right) and gb ranges from 0 

(top) to 0.45 (bottom).  The top and middle panels are colored like the four 

panels in the previous figure.  The bottom two panels show the result when 

some of the values are subtly changed.  fA[A][A] = 1.5 (vs. 2.0), fA[B][B] = 1.5 

(vs. 1.1), fA[C][D] = 0.4 (vs. 0.2), fB[C][C] = 3.1 (vs. 4.1), fB[D][D] = 3.0 (vs. 4.0), 

fC[A][C] = 4.0 (vs. 2.0), fD[A][D] = 1.0 (vs. 1.3), fD[B][C] = 1.0 (vs. 1.3), ha = ga 

(vs. 0.01), hb = 0.008 (vs. 0.01). 

 

 

 

 

 

 

 

 

 

 

The irregularity of this shape and its susceptibility to 

changes in the factors used in the equation supports the 

following concept: 

 

5) In this model it is difficult to predict which constant 

rates of production (i.e. ga, gb, ha and hb ) lead to 

conditions that do or do not lead to infinite protein 

production and which of these rates also led to cell 

division. 
 

Naturally, this now raises the question of how this could be 

applicable to in vivo cellular processes. 

 

ga, gb, ha and hb could be seen as constant rates of production 

that are each due to the concentration of one transcription 

factor.  Thus, [A] would increase by ga through the constant 

activity of one transcription factor. 

 

There are many ways through which transcription factors 

can regulate transcription.  For instance, their concentrations 

can be important as increasing concentrations drive their 

associations with targets.  In addition, mutations affecting 

their ability to bind DNA or recruit additional transcriptional 

machinery can alter their ability to regulate transcription. 



Part 7: The Relevance To Diseases, Transcription 

Factors And Microarrays 
While potential changes in transcription factor 

concentrations can be detected by microarrays, changes in 

the activity thereof cannot.  As ga, gb, ha and hb relate to the 

ability of transcription factors to produce A, B, C and D and 

not necessarily to the concentration of these transcription 

factors, this leads to the following concept: 

 

6) The observed levels of some proteins or their 

transcripts may differ from normal conditions due to 

changes that are not related to the concentrations of 

transcription factors or the transcripts thereof. 

 

Now that ga, gb, ha and hb can be related to cellular 

processes, this raises the question of how the products and 

squares of [A], [B], [C] and [D] could affect transcription.   

 

Collision theory provides the answer as the relative number 

of collisions between molecules is proportional to the 

product of their concentrations.  

 

Therefore, A, B, C and D can affect transcription in this 

model if their ability to do so is dependent on their 

interaction with one another. 

 

Ideally, these interactions would have high dissociation rates 

so that the binding of two monomers to form a complex only 

temporarily reduces the concentrations of the monomers.  

These complexes can then either temporarily act as 

transcription factors or catalyze the activation of 

transcription factors, directly or indirectly.  The transcription 

factors then lead to the production of additional monomers.  

This leads to the following concepts: 

 

7) The previously mentioned equations and/or 

modifications thereof can apply to physiological 

processes. 

 

8) The outcomes of physiological processes that are 

influenced by the interactions of two or more molecules 

are nearly impossible to predict unless one knows exactly 

how the molecules interact. 

 

This explains why the underlying cause of a disease may be 

difficult to detect as it may be a subtle alteration in the 

concentration or activity of a single previously unknown 

protein.  While potential changes in concentration can be 

detected by microarray, the difference between a healthy and 

a diseased state may be too small to detect; and a change in 

activity is impossible to detect directly.  Thus when studying 

processes using microarrays, many of the genes responsible 

for the phenotype of a differentiated cell will be detectable 

while genes that are responsible for controlling the 

differentiation may not be.  This leads to the following 

concept: 

 

9) Microarrays are perfectly good for identifying 

differences while they may give little insight into the 

underlying cause or causes of the differences. 



Part 8: Determining The Duration Of Receptor 

(e.g. TCR) Ligation 
In order for activities to be dependent on the products and 

squares of concentrations, the interactions need to be short 

lived so that the concentrations of monomers are not greatly 

lowered through the formation of complexes. 

 

If an interaction has a high association rate and a low 

dissociation rate then the concentration of the complexes 

will be linearly dependent on the lower monomer 

concentration.  That is, if B is in excess, then each additional 

A will bind to form AB and thus the amount of AB is 

dependent on the amount of A that is produced. 

 

If, on the other hand, an interaction has a high dissociation 

rate then concentrations of short-lived AB complexes are 

dependent on the products of the concentrations of A and B. 

 

This has implications as such complexes, while potentially 

capable of influencing cellular processes, are impossible to 

detect through techniques such as immunoprecipitation that 

rely on the formation of stable complexes. 

 

However, these complexes may be very important… 

 

Time-dependent processes may be dependent on such fast 

dissociation rate interactions.  For a cell, determining how 

long a receptor has been engaged is important.  If 

engagement leads to a catalytic activity, then the amount of 

product formed from substrate is proportional to the duration 

of the engagement (black lines).  At the same time, it is also 

proportional to the amount of engaged receptors.  However, 

as products are formed linearly and diffuse away from their 

receptors, product collisions should increase based on the 

square of product concentrations.  Thus, even if many 

catalytic receptors are briefly engaged, there will not be 

many product collisions.  However, if even a few are 

engaged for a longer time, then product collisions will begin 

to increase rapidly (red lines).  If such product collisions 

can be measured, perhaps through a catalytic activity that is 

only present when two colliding products briefly form a 

complex, then these collisions can be used to determine 

whether or not a long-duration receptor engagement has 

taken place. 

 

 

 

 

3 Receptors engaged, collisions matter 

2 Receptors engaged, collisions matter 

1 Receptor engaged, collisions matter 

 

1 – 3 Receptors engaged 

collisions do not matter 



Part 9. What To Look For By Intracellular FACS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The rate of collision of two molecules is proportional to the 

product of the concentrations of these two molecules. 

 

If a constant rate of collision between two molecules, or 

variants thereof (e.g. phosphorylated), is important for 

cellular survival, then their concentrations in population of 

cells may distribute as above.  The concentrations of the two 

molecules are represented by the two axes and the thick 

curved line represents values where the product is 100.  The 

thin lines represent values where the product is 200, 300, 

400, 500, 600, 700, 800, 900 and 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Thus, if the distribution of concentrations of two molecules 

in a population of cells takes the shape of a downward 

diagonal on a logarithmic plot, then this suggests that the 

rate of collision between these two molecules, or variants 

thereof, is kept constant and may be important.  

     



10. But It Might Not Be That Easy 
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One can now easily imagine situations where collisions 

between three (instead of two) proteins matter… 

 

For this system, assume that the expression of two proteins 

in a population of cells has a normal distribution (i.e. cells 

express a certain amount on average but might also express 

a bit more or less of each protein).  In addition, the 

expression of each protein has no effect on the expression of 

the other.  By intracellular FACS, this would lead to a plot 

that looks similar to the following: 

 

 

 

 

 

 

 

 

 

 

 
 

If collisions between these two proteins and a third protein 

are important and if the expression of the third protein is 

adjusted dependent on the expression of the other two 

proteins, then the resulting intracellular FACS plot of the 

third protein in relation to the first or second protein would 

look as follows: 

 

 

 

 

 

 

 

 

 

 
 

On the other hand, if the expression of all three proteins has 

a normal distribution and only certain numbers of collisions 

between these proteins are compatible with life, then the 

intracellular FACS plot would look as follows: 
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Conclusions 

 The Mandelbrot set is illustrative of many 

important concepts but may not be directly 

descriptive of any cellular process 

 

 Interactions with fast dissociation rates may be 

very important in cellular processes 

 

 Interactions with fast dissociation rates may be 

the reason why some experiments are highly 

dependent on seemingly irrelevant 

experimental conditions 

 

 Interactions with fast dissociation rates could 

allow cells to determine how long their 

receptors are bound to a ligand 

 

 If a signaling pathway branches, collisions 

between molecules in different downstream 

braches can be used to determine how long 

upstream events are taking place 

 

 Molecules that interact with fast dissociation 

rates are difficult to identify 

 

 The phenotypes caused by molecule 

interactions cannot be used to identify the 

equations of the underlying interactions 

 

 It will be necessary to identify the association 

and dissociation rates for most proteins with 

most other proteins in order to obtain the 

equations 

 

 

 

 

 With only 30,000 proteins, that leads to only 

about a billion experiments that need to be 

performed … assuming that we are only 

concerned with collisions between two (and not 

three) molecules 

 


